

 Phoenix Routes Extension Framework

 v0.3.0-alpha.4

 Table of contents

 	README

 	Usage

 	Change Log

 	Routex Extensions

 	Troubleshooting

 	Routex Extensions

 	Localized Routes with Routex

 	

 	Modules

 	Routex

 	Routex.Attrs

 	Routex.Backend

 	Routex.Branching

 	Routex.Dev

 	Routex.Extension

 	Routex.Matchable

 	Routex.Processing

 	Routex.Route

 	Routex.Router

 	Routex.Utils

 	Extensions

 	Routex.Extension.AlternativeGetters

 	Routex.Extension.Alternatives

 	Routex.Extension.Assigns

 	Routex.Extension.AttrGetters

 	Routex.Extension.Cldr

 	Routex.Extension.Cloak

 	Routex.Extension.Interpolation

 	Routex.Extension.RouteHelpers

 	Routex.Extension.Translations

 	Routex.Extension.VerifiedRoutes

 	Submodules

 	Routex.Extension.Interpolation.NonUniqError

 	Routex.Extension.Alternatives.Branch.Flat

 	Routex.Extension.Alternatives.Branch.Nested

 	Routex.Extension.Alternatives.Config

 	Routex.Extension.Alternatives.Exceptions

 	Routex.Extension.Alternatives.Exceptions.AttrsMismatchError

 	Routex.Extension.Alternatives.Exceptions.MissingRootSlugError

README

[image: Coveralls]
[image: Build Status]
[image: Last Updated]
[image: Hex.pm]
[image: Hex.pm]
Routex: Supercharge your Phoenix Router
Routex is a powerful, developer-friendly routing library build on top of Phoenix
Router. It is designed to simplify route manipulation —giving developers a new
level of control over route management. Whether it’s multilingual URLs, route
interpolation, or alternative route management, Routex can deliver.
Due to its focus on flexibility, Routex is suited for both small and large-scale
projects, allowing for seamless integration into existing codebases or entirely
new applications. You simply enable the extensions your project needs or write
them yourself without having to worry about the plumbing.

 Top Features and Benefits

	Dynamic Routing: Routex supports complex route structures, including
localized alternatives.
	Extension driven: Being extension driven, Routex can be adapted to your
needs without overhead of unused features. It's architecture allows you to write
your own features without having to worry about breaking existing functionality. Routex ships with extensions covering a wide range of use cases. Have a look at
a summary of extensions.
	Optimized for Performance: Built to fit directly into the Phoenix routing
system and with a focus on compile time, Routex enhances functionality without
adding runtime overhead, ensuring that applications run as fast as ever.
	Detailed Documentation: Comprehensive, well-organized documentation
provides clear guidance on installation, configuration, and best practices,
making Routex approachable for developers at all levels. For example: If you
are interested in localized routes have a look at the Localized Routes Tutorial.

 Demo

See Routex in action at the official Routex Demo page.

 Requirements and Installation

See the Usage Guide for the requirements and installation
instructions.

 Documentation

HexDocs (stable) and GitHub
Pages (development).

 Routex vs Cldr Routes vs Phoenix Localized Routes

The capabilities and advancements within Routex surpass those of Phoenix Localized Routes, offering a comprehensive array of features. As Phoenix
Localized Routes has stagnated in its development, developers are strongly
advised to transition to Routex for a more robust solution.
When considering Routex against Cldr Routes, it's akin to comparing Apple to
Linux. Cldr Routes is a limited walled garden but is developed by the main Cldr
developer ensuring maximum compatibility. Routex on the other hand boasts a
wider and more dynamic feature scope providing maximum freedom. Its primary
advantages over Cldr Routes are it's extension mechanism and the minimized
necessity for code modifications throughout a codebase.
But why choose when you can have Cldr through the Cldr extension for
Routex?

 Comparison table

	Feature	Routex	Cldr Routes	PLR
	Route encapsulation	Full [^1]	Limited	Limited
	Route manipulation	Full [^2]	Limited	Limited
	Route interpolation	Full	Limited	No
	Alternative Routes	Full	Cldr	Full
	Translation	☑	☑	☑
	Route Helpers	☑	☑	☑
	Verified Routes	☑	☑	☐
	Drop-in replacement	☑ [^3]	☐	☑
	Standalone	☑	☐	☐
	Modular	☑	☐	☐
	Extendable	☑	☐	☐

[^1]: Routex' preprocesss_using is not bound to Phoenix (session) scopes
[^2]: Crazy example
[^3]: Routex can be configured to shim original Phoenix functionality (for
example: `~p` and `url/2`) while Cldr Routes mandates code modifications
(for example: `~p` -> `~q` and `url/2` -> `url_q/2`)

Usage

 Requirements

	Elixir >=1.11
	Phoenix >= 1.6.0
	Phoenix LiveView >= 0.16 (optional)

 Installation

You can install this library by adding it to your list of dependencies in mix.exs. (use mix hex.info routex to find the latest version):
def deps do
 [
 ...other deps
+ {:routex, ">= 0.0.0"}
]
end
Modify the entrypoint your web interface definition.
file: lib/example_web.ex

+ use Routex.Router # always before Phoenix Router
 use Phoenix.Router, helpers: false

in controller
 unquote(verified_routes())
+ unquote(routex_helpers())

in live_view
 unquote(html_helpers())
+ on_mount(unquote(__MODULE__).Router.RoutexHelpers)

in view_helpers or html_helpers
 unquote(verified_routes())
+ unquote(routex_helpers())

insert new private function
+ defp routex_helpers do
+ quote do
+ import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
+ alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
+ end
+ end
The on_mount hook attaches a handle_param which in turn assigns a few
(helper) values to the connection and/or socket. This includes the current url
and any assigns created by Routex Extensions. When you want to have full control
over these hooks, you can use something like the snippet below instead.
def on_mount(_, params, session, socket) do
 socket =
 Phoenix.LiveView.attach_hook(socket, :set_rtx, :handle_params, fn _params, url, socket ->
 attrs = ExampleWeb.Route.RoutexHelpers.attrs(url)
 rtx_assigns = [url: url, __branch__: attrs.__branch__] ++ Map.to_list(attrs.assigns)

 {:cont, Phoenix.LiveView.assign(socket, rtx_assigns)}
 end)

 {:cont, socket}
end

 Configuration

To use Routex, a module that calls use Routex.Backend (referred to below as a
"backend") has to be defined. It includes a list with extensions and
configuration of extensions.
defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
 extensions: [
 # ...list of extensions...
],
end

 Extensions

Routex is merely a framework and relies on extensions to provide features. Each
extension provides a single feature. The extensions have their own documentation
which specifies how to configure and use them.

 Preprocess routes with Routex

Routex will preprocess any route wrapped in a preprocess_using block; either
direct or indirect. It uses the backend passed as the first argument. This
allows the use of multiple backends (e.g. to use different extensions for admin
routes)
file: router.ex
 scope "/", ExampleWeb, host: "admin.", as: :admin do
 pipe_through :browser

+ preprocess_using ExampleWeb.RoutexBackendAdmin do
 # [...routes...]
+ end
 end

+ preprocess_using ExampleWeb.RoutexBackend do
 scope "/", ExampleWeb do
 pipe_through [:browser, :redirect_if_user_is_authenticated]
 # [...routes...]
 end

 scope "/", ExampleWeb do
 pipe_through [:browser, :require_authenticated_user]
 # [...routes...]
 end
+ end
When you run into issues, please have a look at the Troubleshooting

Change Log

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

 v0.3.0-alpha.4 (2024-11-04)

 v0.3.0-alpha.3 (2024-10-28)

 Features:

	cldr: add adaptor for projects using Cldr

 Bug Fixes:

	core: preprocess_using does not accept options

	mix: do not override dep :ssl_verify_fun

 v0.3.0-alpha.2 (2024-10-23)

 Breaking Changes:

	dev: rename development aid functions

	alternatives: rename :is_current? to :match?

	translations: depend on Gettext greater than 0.26.0

 Bug Fixes:

	docs: warnings about referencing Phoenix.Router.Route

	core: rename is_private/1 to private?/1

	ci: update Github actions

	core: warning during compilation about usage of :warn

 v0.3.0-alpha.1 (2024-10-21)

 Breaking Changes:

	core: remove Routex.Path module

	core: split Extension Utils module

	alternatives: rename scope to branch

 Features:

	core: merge private Routex attrs into socket

	verified: branching macro's of all arities of ~p, url and path

	core: enable AST-free manipulation of routes with interpolation

	alternatives: indicate if an alternative route is_current?

	interpol: add extension for interpolation of routes

	translations: distinct locale and language

	core: introduce Branching module

	core: introduce Matchable module

 v0.2.0-alpha.8 (2023-10-18)

 Bug Fixes:

	translations: reliably extract segments to translate

 v0.2.0-alpha.7 (2023-05-31)

 Features:

	utils: use verbose defaults for esc_inspect/2

 Bug Fixes:

	route: swallowed routes due to nonunique map key

 v0.1.0-alpha.6 (2023-05-30)

 v0.1.0-alpha.5 (2023-05-05)

 Features:

	add ROUTEX_DEBUG for compilation debugging (#3)

 Bug Fixes:

	verified: let Phoenix handle missing routes

Routex Extensions

List of extensions
A list of included extensions can be found in the README.

Routex Extensions extend the functionality provided by Routex to transform
routes or generate new route based helper functions. Each extension is a module
which implements the Routex.Extension behaviour. It has to implement one or
multiple callbacks:
	configure/2
	transform/3
	post_transform/3
	create_helpers/3

Routex will call those callbacks at different stages before Routex handsoff the
result to Phoenix.Router for compilation.

 Callbacks and stages

 Stage 1: Configure

This stage enables extensions to preprocess backend options upfront.
The configure/2 callback is called with the options provided to
Routex.Backend and the name of the Routex backend. It is expected to return a
new list of options.
Routex collects all options in this stage for subsequent stages. Therefore,
extensions should add any fallback/default they might use themselves to the
options in this stage.
To aid in code completion, the final configuration is passed as a struct to
subsequent stages.

 Stage 2: Transform

This stage is meant to change the properties of routes, which are at that moment
Phoenix.Router.Route structs. The routes are grouped by Routex backend and
processed per group, allowing an extension to use accumulating values within one
iteration.
The transform/3 callback is called with a list of routes belonging to a
Routex backend, the name of the backend and the current environment. It is
expected to return a list of Phoenix.Router.Route structs.
Flattening option values
Extensions can make use of Routex.Attrs provided by Routex itself, Routex
backends and other extensions.
To make the availability of the attributes as predictable as possible, Routex
uses a flat structure which is stored in a routes' private.routex field.
However, using a flat structure might conflict with developer experience;
sometimes a nested structure to provide configuration options might be more
suitable.
One responsibility of the transform/3 callback is to flatten the structure of
attributes they use for each route they receive, so other extensions can use
attributes set by the current extension without knowledge of the configuration
structure.
Example
The Alternatives extension uses nested options and allows inheritance
of attributes from parent branches.
alternatives: %{
 "/" =>
 helper: nil,
 locale: "en_GB",
 branches: %{
 "nl" => %{
 helper: "nl",
 locale: "nl_NL"
 },
 "gb" => %{
 helper: "gb",
 }
 }
}
The Alternatives module is therefor responsible for flattening those for
(itself and) other extensions to use. To take the route responsible for the
"gb" branch as an example, the extension should add flattened attributes in the
Route struct. It can do so using the helper function Routex.Attrs.put/2.
Routex.Attrs.put(route, [locale: "en_GB", helper: "gb"])
Now the Translation extension can search for the option :locale in the
route's attributes, unaware of how that locale was initially configured.

 Stage 3: Post Transform

The post_transform stage is meant to set Routex.Attrs knowing all other
properties of a route are available.

 Stage 4: Create helpers

In this stage helper functions can be generated which will be added to
MyAppWeb.Router.RoutexHelpers.
The create_helpers/3 callback is called with a list of routes belonging to a
Routex backend, the name of the Routex backend and the current environment.
It is expected to return Elixir AST.
As a result the developer only has to import MyAppWeb.Router.RoutexHelpers
for all helpers generated by extensions to be included in the app.

 Guidelines

	make functions not defined by the Routex.Extension behaviour private.
	provide as many options as possible; other extensions might use the information.
	provide additional options as flat list(s) so other extensions don't have to guess structure.
	as other extensions might use options set by your extension, try to preserve any previously defined option.

 Documentation

@moduledoc """
Summary of feature provided.

Options
- `name` - description

Example configuration
```diff
# file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
  use Routex.Backend,
  extensions: [
+   Routex.Extension.Name
    Routex.Extension.Attrs
],
+ name_config: [name_opt: "value"]
```

Pseudo result
 /products/:id/edit ⇒ /products/:id/edit

`Routex.Attrs`
Requires
- none

Sets
- none

Helpers
function_name(arg1 :: type) :: type
"""

Troubleshooting

 Compilation

When your application fails to compile you might find the cause by setting the
environment variable ROUTEX_DEBUG to true.
ROUTEX_DEBUG=true mix compile
Do note that this might show early compilation issues, but will make the final
compilation fail at all times.

Routex Extensions

Routex relies on extensions to provide features. Each extension provides a
single feature and should minimize hard dependencies on other extensions.
Instead, Routex advises to make use of Routex.Attrs to share attributes;
allowing extensions to work together without being coupled.
The documentation of each extension lists any provided or required
Routex.Attrs.

 Alternatives

Create alternative routes based on branches configured in a Routex backend
module. Branches can be nested and each branch can provide it's own attributes to
be shared with other extensions.
Alternatives Documentation

 Translations

This extension extracts segments of a routes' path to a routes.po file for
translation. At compile-time it combines the translated segments to translate
routes. As a result, users can enter URLs using localized terms which can
enhance user engagement and content relevance.
Translations Documentation

 Multilingual Routes

The Alternatives extension can be combined with the Translations extension to
create multilingual routes. The Alternatives extension can provide the :locale
attribute used by the Translations extension.
Original Step 1: Alternatives Step 2: Translations
 ⇒ /products/:id/edit ⇒ /products/:id/edit
/products/:id/edit ⇒ /eu/nederland/products/:id/edit ⇒ /eu/nederland/producten/:id/bewerken
 ⇒ /eu/espana/products/:id/edit ⇒ /eu/espana/producto/:id/editar
 ⇒ /gb/products/:id/edit ⇒ /gb/products/:id/edit

 Alternative Getters

Creates a helper function alternatives/1 to get a list of alternative slugs
and their route attributes. The current route is also included and has attribute
current?: true. As Routex sets the @url assign you can simply
get all routes to the current page with alternatives(@url), use an attribute in the
route as button text and highlight the current active route button.
Alternative Getters Documentation

 Verified Routes

Routex is fully compatible with Verified Routes.
This extension creates a sigil (default: ~l) with the ability to branch based
on the current alternative branch of a user. It is able to verify routes even
when thy have been transformed by Routex extensions. Optionally this sigil can
be set to ~p (Phoenix' default) as it is a drop-in replacement.
It also provides branching variants of url/{2,3,4} and path/{2,3}.
Verified Routes Documentation

 Route Helpers

Creates Phoenix Helpers that have the ability to branch based on the current
alternative branch of a user. Optionally these helpers can replace the original
Phoenix Route Helpers as they are drop-ins.
Route Helpers Documentation

 Interpolation

With this extension enabled, any attribute assigned to a route can be used
for route interpolation. Most effective with an extension which enables
alternative routes generation (such as extension Alternatives).
/product/#{territory}/:id/#{language} => /product/europe/:id/nl
Interpolation Documentation

 Assigns

With this extension you can add (a subset of) attributes set by other extensions
to Phoenix' assigns making them available in components and controllers with the
@ assigns operator (optionally under a namespace)
@namespace.area => :eu_nl
@namespace.contact => "contact@example.com"
Assigns Documentation

 Attribute Getters

Creates a helper function attrs/1 to get all Routex.Attrs of a route. As
Routex sets the @url assign you can simply get all attributes for the
current page with attrs(@url).
This way the assigns can be a subset of the full list of attributes but the
full list can be lazy loaded when needed.
Attribute Getters Documentation

 Cldr Adaptor

Adapter for projects using :ex_cldr.
Cldr Adaptor Documentation

 Cloak (show case)

Transforms routes to be unrecognizable. This extension is a show case and may
change at any given moment to generate other routes without prior notice.
In this example it numbers all routes starting at 01 and increments the counter
for each route. It also shifts the parameter to the left; causing a chaotic
route structure. Do note: this still works with the Verified Routes extension
while using the standard route (e.g. <.link navigate={~p"/products">) in
templates.
 Original Rewritten Result (product_id: 88, 89, 90)
 /products ⇒ /01 ⇒ /01
 /products/:id/edit ⇒ /:id/02 ⇒ /88/02, /89/02, /90/02 etc...
 /products/:id/show/edit ⇒ /:id/03 ⇒ /88/03, /89/03, /90/03 etc...
Cloak Documentation

Localized Routes with Routex

A core feature of Routex is to enable Localized Routes in Phoenix with
translated URLs, enhancing user engagement and content relevance. In this
tutorial we will explain how multiple extensions are combined to have a product
page with Ural's in multiple languages and how you can display links to the
localized pages. Without changing a single route in your templates!
 ⇒ /products/:id/edit @loc.locale = "en_US"
/products/:id/edit ⇒ /eu/nederland/producten/:id/bewerken @loc.locale = "nl_NL"
 ⇒ /eu/espana/producto/:id/editar @loc.locale = "es_ES"
 ⇒ /gb/products/:id/edit @loc.locale = "en_GB"
This tutorial assumes you have followed the usage guide to setup
Routex.
If you encounter any issues with Routex or this tutorial, feel free to open a topic at Elixir
Forums or create an issue at GitHub.

 What we start with

Currently we have multiple routes to the product page. Your route.ex file
contains something like the example below.
 preprocess_using ExampleWeb.RoutexBackend do
 scope "/", ExampleWeb do
 pipe_through :browser

 live "/products", ProductLive.Index, :index
 live "/products/new", ProductLive.Index, :new
 live "/products/:id/edit", ProductLive.Index, :edit
 live "/products/:id", ProductLive.Show, :show
 live "/products/:id/show/edit", ProductLive.Show, :edit
 end
 end
When you run mix phx.routes you will see those routes as:
product_show_path GET /products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_path GET /products/:id ExampleWeb.ProductLive.Show :show
product_index_path GET /products/:id/edit ExampleWeb.ProductLive.Index :edit
product_index_path GET /products/new ExampleWeb.ProductLive.Index :new
product_index_path GET /products ExampleWeb.ProductLive.Index :index
You want these pages to be accessible from multiple (translated) URLs. So our
first step is to generate alternative routes.

 Step 1: Generate alternative URLs

The Routex.Extension.Alternatives does exactly this. Add it to the list of extensions
and provide a minimal configuration.
use Routex.Backend,
extensions: [
+ Routex.Extension.Alternatives,
],
+ alternatives: %{
+ "/" => %{
+ branches: %{
+ "/europe" => %{
+ branches: %{
+ "/nl" => %{},
+ "/be" => %{}
+ }
+ },
+ "/gb" => %{}
+ }
+ }
+ }
You can confirm it works by running mix phx.routes. It now shows a lot more
routes as alternatives are generated for each route within the
preprocess_using block. For example the route to /products/:id/show/edit has
multiple alternatives.
product_show_path GET /products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_europe_path GET /europe/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_europe_be_path GET /europe/be/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_europe_nl_path GET /europe/nl/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
product_show_gb_path GET /gb/products/:id/show/edit ExampleWeb.ProductLive.Show :edit
As you can see the routes are still in the English language; we need another extension to
translate them

 Step 2: Translate the alternative routes

The Routex.Extension.Translation makes routes translatable by splitting the route
into segments (e.g. ["products", "show", "edit"]) and extracting these
segments to a routes.po file for translation. You might recognize the .po
extension from your Phoenix project; it's the extension used by Gettext. Gettext
is a standard for i18n in different communities, meaning there is a great set of
tooling for developers and translators. This also means your routes segments can be
translated with the same tooling as used for all other translations in Phoenix!
Add the extension and it's minimal configuration.
use Routex.Backend,
extensions: [
 Routex.Extension.Alternatives,
+ Routex.Extension.Translations,
],
 alternatives: %{...},
+ translations_backend: ExampleWeb.Gettext,
If this is the first time you add translations in your project, you need to
generate the folder structure which Gettext can use to detect languages to
translate to. We need two languages in this tutorial: 'en' and 'nl'. As 'en' is
the default for routes we only need to create translations for 'nl'.
mix gettext.extract
mix gettext.merge priv/gettext --locale nl
You should see a message that Gettext has generated new translation files which
can be found in the priv/gettext/nl folder
priv/
 gettext/
 nl/
 LC_MESSAGES/
 default.po # phoenix translations
 routes.po # routex translations
Now you can translate the segments by opening the routes.po file with your
favorite .po editor. Here are a few suggestions:
	GNU Emacs (with po-mode): Linux, MacOSX, and Windows.
	Lokalize: runs on KDE desktop for Linux (replacement for KBabel; formerly known as KAider)
	Poedit: Linux, MacOSX, and Windows
	OmegaT: Linux, MacOSX, and Windows
	Vim: Linux, MacOSX, and Windows with PO ftplugin for easier editing of GNU gettext PO files.
	gted plugin for Eclipse (if you are already using Eclipse)
	gtranslator: Linux/Gnome
	Virtaal: Windows, Mac (Beta version)

One you have translated the segments, list all routes using mix phx.routes.
The compilation will fail with the message:
** (RuntimeError) Routex backend `Elixir.ExampleWeb.RoutexBackend` lists extension `Elixir.Routex.Extension.Translations` but
 neither :language nor :locale was found in private.routex of route %Phoenix.Router.Route{[...]}
This makes sense. After all, we have multiple routes and a translation of
segments but Routex does not know which translation to use for what route.
Apparently we need to set an attribute :locale or :language per
alternatives.
Luckily this is covered by Extension.Alternatives as it supports setting the
:attrs key per branch. Let's replace the alternatives configuration with one
that also sets the :locale attribute. While we are add it, we also give the
branches a :display_name attribute.
 alternatives: %{
 "/" => %{
+ attrs: %{locale: "en-150", display_name: "Global"},
 branches: %{
 "/europe" => %{
+ attrs: %{locale: "en-150", display_name: "Europe"},
 branches: %{
+ "/nl" => %{attrs: %{locale: "nl_NL", display_name: "The Netherlands"}},
+ "/be" => %{attrs: %{locale: "nl_BE", display_name: "Belgium"}}
 }
 },
+ "/gb" => %{attrs: %{locale: "en-150", display_name: "Great Britain"}}
 }
 }
 }
Note
As locale: "en-150" seems to be a default, consider using a struct with a default value instead of a map.
Now when you list all routes using mix phx.routes, you will see some routes
have been translated. We are getting there!
product_show_path GET /products/:id/show/edit
product_show_europe_path GET /europe/products/:id/show/edit
product_show_europe_be_path GET /europe/be/producten/:id/toon/bewerken
product_show_europe_nl_path GET /europe/nl/producten/:id/toon/bewerken
Now we have the routes it would be nice if users stay within their locale
while browsing pages.

 Step 3: Dynamic links in your application

When you start your app with mix phx.server and you visit a 'localized' page
such as /europe/nl/producten you will notice that every link on the page will
bring you back to a default route. In the code the path of the link is written
like ~p"/products". It would be nice if instead of always rendering a link to
/products, Phoenix would instead render a localized link. Enter
Routex.Extension.VerifiedRoutes.
Note
In older Phoenix applications you might find something like
ExampleAppWeb.Router.Helpers.product_path(conn_or_endpoint, :show, "hello").
These are Phoenix Router Helpers and those are deprecated in favor of the
Verified Routes using ~p"/my_path". When you can't migrate, you can use
Routex.Extension.RouteHelpers instead of Routex.Extension.VerifiedRoutes.
You might already have guessed it: we are gonna add the extension and some
configuration to the backend.
use Routex.Backend,
extensions: [
 Routex.Extension.Alternatives,
 Routex.Extension.Translations,
+ Routex.Extension.VerifiedRoutes,
],
 alternatives: %{...},
 translations_backend: ExampleWeb.Gettext,
+ verified_sigil_routex: "~p",
+ verified_sigil_phoenix: "~o",
+ verified_url_routex: :url,
+ verified_path_routex: :path
By default the extension uses non-standard macro names. As we want to have
dynamic routes throughout our application, we 'take over' the names used
by Phoenix in your application and rename the originals. This way you do not
need to modify all your templates. Convenient.
To not have duplicated imports, add this to your routex_helpers in example_web.ex
 def routex_helpers do
 quote do
+ import Phoenix.VerifiedRoutes,
+ except: [sigil_p: 2, url: 1, url: 2, url: 3, path: 2, path: 3]

 import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
 alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
 end
 end
Now when you start your app with mix phx.server you will notice an explanation
is printed about the usage of Routex Verified Routes. This informs other
developers of the 'take overs'.
Due to the configuration in module `ExampleWeb.RoutexBackend` one or multiple
Routex variants use the default name of their native Phoenix equivalents. The native
macro's, sigils or functions have been renamed.

 Native | Routex

 ~o | ~p
 url_phx | url
 path_phx | path

 Documentation: https://hexdocs.pm/routex/extensions/verified_routes.html
When you visit a 'localized' page such as /europe/nl/producten you will notice
that every link on the page will keep you within the localized 'branch'
/europe/nl/. Keeping users in a localized environment is great, but giving
them an option to switch to another locale would be nice.
Let's empower our visitors!

 Step 4: Show alternative pages to the user

The Routex.Extension.AlternativeGetters generates function at compile time to
dynamically fetch alternative routes for the current url without overhead. Let's
once again add the extension.
use Routex.Backend,
extensions: [
 Routex.Extension.Alternatives,
 Routex.Extension.Translations,
 Routex.Extension.VerifiedRoutes,
+ Routex.Extension.AlternativeGetters,
],
 alternatives: %{...},
 translations_backend: ExampleWeb.Gettext,
 verified_sigil_routex: "~p",
 verified_sigil_phoenix: "~o",
 verified_url_routex: :url,
 verified_path_routex: :path
All created functions pattern match on a given URL and return the alternatives
with a slug, the match? attribute which is true if the route pattern matches
the provided path, and attributes of the route.
iex> ExampleWeb.Router.RoutexHelpers.alternatives("https://example.com/products?search=bar#top")
[
 %Routex.Extension.AlternativeGetters{
 slug: "/products?search=bar#top",
 attrs: %{
 name: "Worldwide",
 locale: "en-US",
 [...]
 },
 match?: true
 },
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/products?search=bar#top",
 attrs: %{
 name: "Europe",
 locale: "en-150",
 [...]
 },
 match?: false
 },
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/be/producten?search=bar#top",
 attrs: %{
 name: "Belgium",
 locale: "nl-BE",
 [...]
 },
 match?: false
 },
 [...]
As Routex automatically assigns the current url to @url we have all
ingredients instantly available in our templates! It becomes a matter of looping
over the results to generate links.
 <!-- alternatives/1 is located in ExampleWeb.Router.RoutexHelpers which is aliased as Routes -->
 <.link
 :for={alternative <- Routes.alternatives(@url)}
 class="button"
 rel="alternate"
 hreflang={alternative.attrs.locale}
 patch={alternative.slug}
 >
 <.button class={(alternative.match? && "bg-[#FD4F00]") || ""}>
 <%= alternative.attrs.display_name %>
 </.button>
 </.link>

 Conclusion

In this tutorial you have learned how to create localized routes for your
Phoenix application using multiple extensions and how to add custom attributes
(such as :locale and :display_name) to these routes. There are a few more
extension you can add to the mix for extra flexibility and convenience, such as:
	Routex.Extension.Interpolation - Use any attribute to customize routes
(e.g. "/#{locale}/products/#{display_name}/:id/edit")
	Routex.Extension.Assigns - Use any attribute in your templates using @
notation.
	Routex.Extension.AttrGetters - Lazy load attributes

If you encounter any issues with Routex or this tutorial, feel free to open a topic at Elixir
Forums or create an issue at GitHub.
Have a nice day!

Routex.Attrs

 Provides an interface to access and update Routex attributes.
 Extensions can make use of Routex.Attrs values provided by Routex itself,
Routex backends and other extensions. As those values are attributes to a
route, extension B can use values attributed to a route by extension A.
	To make the availability of the attributes as predictable as possible, Routex
uses a flat structure.
	Extension developers are encouraged to put as much information into the attributes
as possible.
	Extensions should add any fallback/default they might use themselves to the
attributes.

 Summary

 Functions

 Routex.Backend - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Backend

use Routex.Backend
When use'd this module generates a Routex backend module and
a configuration struct using the configure/2 callbacks of
the extensions provided in opts.
See also: Routex Extensions.

Example
 iex> defmodule MyApp.RtxBackend do
 ...> use Routex.Backend,
 ...> extensions: [
 ...> Routex.Extension.VerifiedRoutes,
 ...> Routex.Extension.AttrGetters,
 ...>],
 ...> extension_x_config: [key: "value"]
 ...> end
 iex> IO.inspect(%MyApp.RtxBackend{})
 %MyApp.RtxBackend{
 extension_x_config: [key: "value"],
 extensions: [Routex.Extension.VerifiedRoutes, Routex.Extension.AttrGetters],
 verified_sigil_routex: "~l",
 verified_sigil_original: "~o"
 }
Values in the configuration can be overridden by providing an override map to the :private option of a scope or route.
Example
live /products, MyApp.Web.ProductIndexLive, :index, private: %{rtx: %{overridden_key: value}}

 Summary

 Types

 Routex.Branching - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Branching

 Provides a function to build branched variants of macro's

 Summary

 Functions

 Routex.Dev - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Dev

Provides functions to aid during development

 Summary

 Functions

 Routex.Extension - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension behaviour

Specification for composable Routex extensions.
Optional callbacks:
	configure
	transform
	post_transform
	create_helpers

See also: Routex Extensions

 Summary

 Types

 Routex.Matchable - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Matchable

Matchables are an essential part of Routex. They are used to match run time
routes with compile time routes.
This module provides functions to create Matchables, convert them to match
pattern AST as well as function heads AST and to check if the routing values
of two Matchable records match.

 Summary

 Functions

 Routex.Processing - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Processing

This module provides everything needed to process Phoenix routes. It executes
the transform callbacks from extensions to transform Phoenix.Router.Route
structs and create_helpers callbacks to create one unified Helper module.
Powerful but thin
Although Routex is able to influence the routes in Phoenix applications in profound
ways, the framework and it's extensions are a suprisingly lightweight piece
of compile-time middleware. This is made possible by the way router modules
are pre-processed by Phoenix.Router itself.
Prior to compilation of a router module, Phoenix Router registers all routes
defined in the router module using the attribute @phoenix_routes. Each
route is at that stage a Phoenix.Router.Route struct.
Any route enclosed in a preprocess_using block has received a :private
field in which Routex has put which Routex backend to use for that
particular route. By enumerating the routes, we can process each route using
the properties of this configuration and set struct values accordingly. This
processing is nothing more than (re)mapping the Route structs' values.
After the processing by Routex is finished, the @phoenix_routes attribute
in the router is erased and re-populated with the list of mapped
Phoenix.Router.Route structs.
Once the router module enters the compilation stage, Routex is already out of
the picture and route code generation is performed by Phoenix Router.

 Summary

 Types

 Routex.Route - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Route

Function for working with Routex augmented Phoenix Routes

 Summary

 Functions

 Routex.Router - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Router

Provides macro (callbacks) to alter route definition before
compilation.
use Routex.Router
When you use Routex.Router, the Routex.Router module will
plug Routex.Processing between the definition of routes and the
compilation of the router module. It also imports the preprocess_using
macro which can be used to mark routes for Routex preprocessing using the
Routex configuration/backend provided as first argument.

 Summary

 Functions

 Routex.Utils - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Utils

Provides an interface to functions which can be used in extensions.

 Summary

 Functions

 Routex.Extension.AlternativeGetters - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.AlternativeGetters

Creates helper functions to get a list of alternative slugs and their Routex
attributes by providing the function a binary url.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.Alternatives,
+ Routex.Extension.AlternativeGetters,
 Routex.Extension.AttrGetters
],

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

	alternatives(url :: String.t()) :: struct()

Example
iex> ExampleWeb.Router.RoutexHelpers.alternatives("/products/12?foo=baz")
[%Routex.Extension.AlternativeGetters{
 slug: "products/12/?foo=baz",
 match?: true,
 attrs: %{
 __branch__: [0, 12, 0],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
 %Routex.Extension.AlternativeGetters{
 slug: "/europe/products/12/?foo=baz",
 match?: true,
 attrs: %{
 __branch__: [0, 12, 1],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
 %Routex.Extension.AlternativeGetters{
 slug: "/asia/products/12/?foo=baz",
 match?: true,
 attrs: %{
 __branch__: [0, 12, 1],
 __origin__: "/products/:id",
 [...attributes set by other extensions...]
 }},
]

 Routex.Extension.Alternatives - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Alternatives

Creates alternative routes based on branches configured in a Routex backend
module. Branches can be nested and each branch can provide Routex.Attrs to be shared
with other extensions.

 Configuration

file /lib/example_web/routex_backend.ex
This example uses a `Struct` for custom attributes, so there is no attribute inheritance;
only struct defaults. When using maps, nested branches will inherit attributes from their parent.

+ defmodule ExampleWeb.RoutexBackend.AltAttrs do
+ @moduledoc false
+ defstruct [:contact, locale: "en"]
+ end

defmodule ExampleWeb.RoutexBackend do
+ alias ExampleWeb.RoutexBackend.AltAttrs

use Routex.Backend,
extensions: [
+ Routex.Extension.Alternatives,
Routex.Extension.AttrGetters
],
+ alternatives: %{
+ "/" => %{
+ attrs: %AltAttrs{contact: "root@example.com"},
+ branches: %{
+ "/europe" => %{
+ attrs: %AltAttrs{contact: "europe@example.com"},
+ branches: %{
+ "/nl" => %{attrs: %AltAttrs{locale: "nl", contact: "verkoop@example.nl"}},
+ "/be" => %{attrs: %AltAttrs{locale: "nl", contact: "handel@example.be"}}
+ }
+ },
+ "/gb" => %{attrs: %AltAttrs{contact: "sales@example.com"}
+ }
+ },
+ alternatives_prefix: false # whether to automatically prefix routes, defaults to true

 Pseudo result

 ⇒ /products/:id/edit locale: "en", contact: "rootexample.com"
/products/:id/edit ⇒ /europe/nl/products/:id/edit locale: "nl", contact: "verkoop@example.nl"
 ⇒ /europe/be/products/:id/edit locale: "nl", contact: "handel@example.be"
 ⇒ /gb/products/:id/edit locale: "en", contact: "sales@example.com"

 Routex.Attrs

Requires
	none

Sets
	any key/value in :attrs
	branch_helper
	branch_alias
	branch_prefix
	branch_opts
	alternatives (list of Phoenix.Route.Route)

 Routex.Extension.Assigns - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Assigns

Extracts Routex.Attrs from the route and makes them available in components
and controllers with the @ assigns operator (optionally under a namespace).

 Options

	namespace: when set creates a named collection of Routex.Attrs
	attrs: when set defines keys of Routex.Attrs to make available

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
+ Routex.Extension.Assigns,
Routex.Extension.AttrGetters
],
+ assigns: %{namespace: :rtx, attrs: [:branch_helper, :locale, :contact, :name]}

 Pseudo result

in (h)eex template
@rtx.branch_helper ⇒ "eu_nl"
@rtx.locale ⇒ "nl"
@rtx.contact ⇒ "verkoop@example.nl"
@rtx.name ⇒ "The Netherlands"

 Routex.Attrs

Requires
	none

Sets
	assigns

 Example use case

Combine with Routex.Extension.Alternatives to make compile time, branch
bound assigns available to components and controllers.

 Routex.Extension.AttrGetters - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.AttrGetters

Creates helper functions to get the Routex.Attrs given a binary url or a
list of path segments. This way the attributes for route can be lazily
loaded.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
+ Routex.Extension.AttrGetters,
],

 Routex.Attrs

Requires
	none

Sets
	none

 Helpers

	attrs(url :: binary) :: map()
	attrs(segments :: list) :: map()

Example
iex> ExampleWeb.Router.RoutexHelpers.attrs("/europe/nl/producten/?foo=baz")
%{
 __branch__: [0, 9, 3],
 __origin__: "/products",
 backend: ExampleWeb.LocalizedRoutes,
 contact: "verkoop@example.nl",
 locale: "nl",
 branch_name: "The Netherlands",
 branch_helper: "europe_nl",
}

 Routex.Extension.Cldr - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Cldr

Adapter for projects using :ex_cldr. It generates the configuration
for Routex.Extension.Alternatives.

 Interpolating Locale Data

Interpolation is provided by Routex.Extension.Interpolation, which
is able to use any Routex.Attr for interpolation. See it's documentation
for additional options.
When using this Cldr extension, the following interpolations are supported as they
are set as Routex.Attr:
	locale will interpolate the Cldr locale name
	locale_display will interpolate the Cldr locale display name
	language will interpolate the Cldr language name
	territory will interpolate the Cldr territory code

Some examples are:
preprocess_using ExampleWeb.RoutexBackend do
 scope "/#{territory}/territory/" do
 get "/#{locale}/locale/pages/:page", PageController, :show
 get "/language/#{language}/pages/:page", PageController, :show
 end
end

 Configuration

defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
+ Routex.Extension.Cldr,
+ Routex.Extension.Alternatives,
+ Routex.Extension.Interpolation, # when using routes with interpolation
+ Routex.Extension.Translations, # when using translated routes
+ Routex.Extension.VerifiedRoutes,
 [...]
 Routex.Extension.AttrGetters
],
+ cldr_backend: MyApp.Cldr,
+ translations_backend: MyApp.Gettext, # when using translated routes
+ translations_domain: "routes", # when using translated routes
+ alternatives_prefix: false, # when using routes with interpolation
+ verified_sigil_routex: "~q", # consider using ~p, see `Routex.Extension.VerifiedRoutes`
defmodule ExampleWeb.Router
require your Cldr backend module before `use`ing the router.
+ require ExampleWeb.Cldr

use ExampleWeb, :router

import ExampleWeb.UserAuth
When your application does not compile after adding this extension, force a
recompile using mix compile --force.

 Pseudo result

 This extension injects :alternatives into your configuration.
 See the documentation of Routex.Extension.Alternatives to see
 more options and the pseudo result.
 alternatives: %{
 "/" => %{
 attrs: %{
 language: "en",
 locale: "en",
 territory: "US",
 locale_display: "English (United States)"
 },
 branches: %{
 "/en" => %{
 language: "en",
 locale: "en",
 territory: "US",
 locale_dispay: "English"
 },
 "/fr" => %{
 language: "fr",
 locale: "fr",
 territory: "FR",
 locale_display: "français"
 }
 }
 }

 Routex.Attrs

Requires
	none

Sets
	language
	locale
	locale_display
	territory

 Summary

 Functions

 Routex.Extension.Cloak - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Cloak

Transforms routes to be unrecognizable.
Warning
This extension is intended for testing and demonstration. It's
behavior may change over time.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
+ Routex.Extension.Cloak,
 Routex.Extension.AttrGetters
],
 ## Pseudo result
/products/ ⇒ /1
/products/:id/edit ⇒ rewrite: /:id/02 ⇒ in browser: /1/02, /2/02/ etc...
/products/:id/show/edit ⇒ rewrite: /:id/03 ⇒ in browser: /1/03, /2/03/ etc...

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.Interpolation - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Interpolation

A route may be defined with a routes Routex.Attrs interpolated
into it. These interpolations are specified using the usual #{variable}
interpolation syntax.
In combination with...
This plugin makes a good duo with Routex.Extension.Alternatives. You might
want to disable auto prefixing for the whole Routex backend (see
Routex.Extension.Alternatives) or per route (see Routexfor
instructions).

Bare base route
The route as specified in the Router will be stripped from any
interpolation syntax. This allows you to still use routes without interpolation
syntax in your templates, have them verified by Verified Routes while generating
routes with interpolated attributes at run time.

 Usage

file /lib/example_web/routes.ex
live "/products/#{locale}/:id", ProductLive.Index, :index

 Pseudo result

in combination with Routex.Extension.Alternatives with auto prefix
disabled and 3 branches. It splits the routes and sets the :locale
attribute which is used for interpolation.

 ⇒ /products/en/:id
/products/:id/ ⇒ /products/fr/:id
 ⇒ /products/fr/:id

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.RouteHelpers - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.RouteHelpers

Provides route helpers with support for automatic selecting alternatives
routes. The helpers can be used to override Phoenix' defaults as they are
a drop-in replacements.
Only use this extension when you make use of extensions generating alternative
routes, as otherwise the result will be the same as the official helpers.

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
+ Routex.Extension.RouteHelpers,
 Routex.Extension.AttrGetters
],
Phoenix < 1.7 created an alias Routes by default. You can either replace it
or add an alias for RoutexHelpers. Phoenix >= 1.7 deprecated the helpers
in favor of Verified Routes.
In the example below we 'override' the default Routes alias to use
Routex' Route Helpers as a drop-in replacement, but keep the original helpers
functions available by using alias OriginalRoutes.
file /lib/example_web.ex
defp routex_helpers do

+ alias ExampleWeb.Router.Helpers, as: OriginalRoutes
+ alias ExampleWeb.Router.RoutexHelpers, as: Routes

end

 Pseudo result

When alternatives are created it uses auto-selection to keep the user 'in branch'.

in (h)eex template
Product #1

is replaced during during compilation with:
case alternative do
 nil ⇒ "/products/#{product}"
 "en" ⇒ "/products/#{product}"
 "nl" ⇒ "/europe/nl/products/#{product}"
 "be" ⇒ "/europe/be/products/#{product}"
end

 Routex.Attrs

Requires
	none

Sets
	none

 Summary

 Functions

 Routex.Extension.Translations - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Translations

Enables users to enter URLs using localized terms which can enhance user engagement
and content relevance.
Extracts segments of a routes' path to a translations domain file (default: routes.po)
for translation. At compile-time it combines the translated segments to transform routes.
This extension expects either a :language attribute or a :locale attribute. When only
:locale is provided it will try to extract the language from the locale tag. This algorithm is
covers Alpha-2 and Alpha-3 codes (see:
ISO)

 Configuration

defmodule ExampleWeb.RoutexBackend do
use Routex.Backend,
extensions: [
+ Routex.Extension.Translations,
 Routex.Extension.AttrGetters
]
+ translations_backend: MyApp.Gettext,
+ translations_domain: "routes",

 Pseudo result

when translated to Spanish in the .po file
- products: producto
- edit: editar

/products/:id/edit ⇒ /producto/:id/editar

 Routex.Attrs

Requires
	language || locale

Sets
	none

 Use case(s)

This extension can be combined with Routex.Extension.Alternatives to create
multilingual routes.
Use Alternatives to create new branches and provide a :language or :locale per branch and
Translations to translate the alternative routes.
 ⇒ /products/:id/edit language: "en"
/products/:id/edit ⇒ /nederland/producten/:id/bewerken language: "nl"
 ⇒ /espana/producto/:id/editar language: "es"

 Routex.Extension.VerifiedRoutes - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.VerifiedRoutes

Supports the use of unmodified route paths in controllers and templates while using transformed
and/or branching paths with compile-time verification and dynamic runtime behavior.
Implementation summary
Each sigil and function eventualy delegates to the official
Phoenix.VerifiedRoutes. If a non-branching route is provided it will
simply delegate to the official Phoenix function. If a branching route is
provided, it will use a branching mechanism before delegation.

 Alternative Verified Route sigil

Provides a sigil (default: ~l) to verify transformed and/or branching routes.
The sigil to use can be set to ~p to override the default of Phoenix as
it is a drop-in replacement. If you choose to override the default Phoenix sigil,
it is renamed (default: ~o) and can be used when unaltered behavior is required.

 Variants of url/{2,3,4} and path/{2,3}

Provides branching variants of (and delegates to) macro's provided by
Phoenix.VerifiedRoutes. Both new macro's detect whether branching should be
applied.

 Options

	verified_sigil_routex: Sigil to use for Routex verified routes (default "~l")
	verified_sigil_phoenix: Replacement for the native (original) sigil when verified_sigil_routex
is set to "~p". (default: "~o")
	verified_url_routex: Function name to use for Routex verified routes powered url. (default: :rtx_url)
	verified_url_phoenix: Replacement for the native url function when verified_url_routex
is set to :url. (default: :phx_url)
	verified_path_routex: Function name to use for Routex verified routes powered path (default :rtx_path)
	verified_path_phoenix: Replacement for the native path function when verified_path_routex
is set to :path. (default: :phx_path)

When verified_sigil_routex is set to "~p" an additional change must be made.
file /lib/example_web.ex
defp routex_helpers do
+ import Phoenix.VerifiedRoutes,
+ except: [sigil_p: 2, url: 1, url: 2, url: 3, path: 2, path: 3]

 import unquote(__MODULE__).Router.RoutexHelpers, only: :macros
 alias unquote(__MODULE__).Router.RoutexHelpers, as: Routes
end

 Configuration

file /lib/example_web/routex_backend.ex
defmodule ExampleWeb.RoutexBackend do
 use Routex.Backend,
 extensions: [
 Routex.Extension.Alternatives,
 [...]
+ Routex.Extension.VerifiedRoutes,
 Routex.Extension.AttrGetters
],
+ verified_sigil_routex: "~p",
+ verified_sigil_phoenix: "~o",
+ verified_url_routex: :url,
+ verified_url_phoenix: :url_native,
+ verified_path_routex: :path,
+ verified_path_phoenix: :path_native,

 Pseudo result (simplified)

given Routex is configured to use ~l
given Phoenix is assigned ~o (for example clarity)

given other extensions have caused a route transformation
~o"/products/#{product}" ⇒ ~p"/products/#{products}"
~l"/products/#{product}" ⇒ ~p"/transformed/products/#{product}"

given another extension has generated branches / alternative routes
~o"/products/#{product}" ⇒ ~p"/products/#{products}"
~l"/products/#{product}" ⇒
 case branch do
 nil ⇒ ~p"/products/#{product}"
 "en" ⇒ ~p"/products/en/#{product}"
 "eu_nl" ⇒ ~p"/europe/nl/products/#{product}"
 "eu_be" ⇒ ~p"/europe/be/products/#{product}"
 end

 Routex.Attrs

Requires
	none

Sets
	none

 Routex.Extension.Interpolation.NonUniqError - Phoenix Routes Extension Framework v0.3.0-alpha.4

Routex.Extension.Interpolation.NonUniqError exception

Raised when a list of routes contains routes with the same